First Principles:

THE FLOW AND INTERACTION OF ENERGY AND TIME

Flow and Interaction^{1a, 1b}

"You have achieved what Leonardo aspired to."
- Curtis Wong, Curator, Bill Gates' Codex Leicester

The Mathematics: Chaos and Complexity² (Shown here: the Lorenz attractor)

<u>FLOW</u>		INTERACTION
dx/dt	=	6 (y-x) convection
dy/dt	=	x(p-z)-y temp (horizontal)
dz/dt	=	(xy-βz) temp (vertical)

"Flow and Interaction applies to everything. Everything in the Universe."

— Dr. Murray Cantor, IBM Fellow, UC Berkeley Professor,
at the FiRe 2017 Conference³

ENERGY4	TIME4
What is flowing? Energy.5	Time is the interval we apply to measure it. ⁶
E=MC ² OR $2(MV^2/2) = M(X^2/T^2)^7$	T

THE PRINCIPLE OF LEAST (EFFECTIVE) ACTION⁸ (mechanics):

 $S = M \int V dr$; $MVR \ or = M(X^2/T^2)$ * T (including special relativity)

HEISENBERG UNCERTAINTY PRINCIPLE9 (quantum mechanics):

 ΔE * $\Delta T \geq \hbar/2 \quad \text{(accenting time view)}$ ΔP * $\Delta X \geq \hbar/2 \quad \text{(accenting space view)}$

2ND LAW of THERMODYNAMICS¹⁰, TIME'S ARROW, GIBBS FREE ENERGY EQUATION

 ΔG = $\Delta H - T\Delta S$

LORENZ ATTRACTOR (repeated as E and T11)

dx	=	dt [6 (y-x)] convection
dy	=	dt [x(p-z)-y] $temp (horizontal)$
dz	=	$dt (xy-\beta z)$ temp (vertical)